
First-principles calculation of atomic force in the LSDA+U formalism

Se Young Park and Hyoung Joon Choi*
Department of Physics and IPAP, Yonsei University, Seoul 120-749, Korea

�Received 2 February 2009; revised manuscript received 15 August 2009; published 15 October 2009�

We derive a formula for the atomic force within the LSDA+U formalism by differentiating analytically the
LSDA+U total-energy functional with respect to atomic positions. The rotationally invariant form of the
LSDA+U functional and the fully localized limit for the double-counting term are considered. The electronic
wave functions are expanded with either plane waves or pseudoatomic orbitals �PAOs�. In the PAO-basis case,
the Pulay correction is also considered and included. Our formula for the atomic force is numerically tested
with antiferromagnetic bulk NiO and reproduces successfully the forces obtained from numerical derivative of
the total-energy values with respect to atomic displacements. As an application, we study atomic vibrations in
NiO and MnO, and obtain transverse-optic phonon frequencies which are consistent with previous theoretical
results. Our force formula will make it very efficient to perform large-scale calculations of atomic and
phononic structures of strongly correlated materials using the LSDA+U method.
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I. INTRODUCTION

The density-functional theory �DFT� �Refs. 1 and 2� with
the local spin-density approximation �LSDA� has been suc-
cessful in describing electronic structures in various metals
and semiconductors. However, in materials such as
transition-metal oxides and rare-earth compounds which are
insulating in spite of partially filled d �or f� shells, the DFT-
LSDA method has poor accuracy since it underestimates the
effect of the strong on-site Coulomb repulsion between d �or
f� electrons. For example, the LSDA calculations of
transition-metal compounds such as NiO and MnO predict
much smaller values, than experiments, for the antiferromag-
netic spin moments and the energy splittings between com-
pletely filled lower Hubbard bands and completely empty
upper Hubbard bands.3 To improve the accuracy of the
LSDA method, the LSDA+U scheme4 has been developed
by adding to the LSDA total-energy functional a correction
term arising from Coulomb interaction between localized d
�or f� orbitals. The corrected LSDA+U functional produces
much better estimates of the antiferromagnetic spin moments
and the band gaps between upper and lower Hubbard bands
in materials such as late-3d-transition-metal monoxides,4 so
the LSDA+U scheme is widely used in the magnetic- and
electronic-structure calculations of transition-metal oxides.

Calculation of the atomic force plays a crucial role in
predicting stable atomic structures of materials and it can be
performed very efficiently if a relevant atomic-force formula
is available. In plane-wave-basis LSDA methods, by using
Hellmann-Feynman theorem,5,6 the force formula can be de-
rived analytically by partial differentiations of the total-
energy functional with respect to atomic positions with no
need to consider any change in the ground-state electron den-
sity. On the other hand, when the electronic wave functions
are expanded with localized orbitals at atomic positions, the
Pulay correction7 should be taken into account in the atomic-
force formula because the density variations due to the
orbital-position changes are not considered when the total-
energy functional is minimized for the ground-state electron
density. While atomic-force formula in LSDA methods is

well developed and published for both plane-wave and
localized-orbital expansions of the wave functions,8,9 deriva-
tion of the atomic-force formula within the LSDA+U
scheme has been reported very rarely, and the published
LSDA+U force formula10 is only for the spherically aver-
aged form4 of the LSDA+U total-energy functional.

In this paper, we report on the derivation of the atomic-
force formula from the LSDA+U total-energy functional
with pseudoatomic orbital �PAO� and plane-wave bases for
the wave functions. We consider the rotationally invariant
form of the functional, which is not biased by specific choice
of the z axis.11 In the case of using a PAO basis set, the Pulay
correction for the atomic force is considered and included.
We implement the LSDA+U energy functional and our
LSDA+U atomic-force formula into the SIESTA �Ref. 12�
code and study atomic, electronic, and phononic structures of
antiferromagnetic bulk NiO and MnO, as examples. The ob-
tained band structures, band gaps, magnetic moments, and
lattice constants agree well with previous LSDA+U calcula-
tions. As a test of our atomic-force formula, we compare the
results of our force formula with the results from numerical
derivative of the total-energy values with respect to atomic
displacements, and find that they agree well with each other,
confirming the validity of our atomic-force formula in the
LSDA+U method. Using our atomic-force formula we in-
vestigate the optical phonon frequencies of NiO and MnO
and analyze the results by comparing them with phonon fre-
quencies calculated by LSDA force formula. Our atomic-
force formula derived in our present work will be very useful
in the optimization of atomic structures, in the investigation
of vibrational structures, and even in molecular dynamic
simulations of strongly correlated materials using the
LSDA+U method.

This paper is organized as follows. In Sec. II, we briefly
review the rotationally invariant form of the LSDA+U total-
energy functional and present basic steps for the derivation
of the force formula. In Sec. III, the LSDA+U force formula
in PAO-basis methods is derived along with the Pulay cor-
rection. Section IV is the derivation of force formula in the
plane-wave-basis method. In Sec. V, we present numerical
tests of the LSDA+U atomic-force formula in the PAO-basis
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method. Frozen-phonon calculations of transverse optical
modes in NiO and MnO using our method are presented in
Sec. VI, followed by summary in Sec. VII.

II. DERIVATION OF ATOMIC-FORCE FORMULA
IN THE LSDA+U SCHEME

In this section, we briefly review the rotationally invariant
form of the LSDA+U energy functional and derive a general
form of the atomic-force formula in LSDA+U scheme. The
general form of the force formula will be used in the follow-
ing two sections to derive specific forms of the force formula
in the PAO-basis method and in the plane-wave-basis
method, respectively.

This section consists of three subsections. In Sec. II A, the
LSDA+U total-energy functional is introduced. In Sec. II B,
the variation in the LSDA+U total-energy functional due to
arbitrary variation in the Kohn-Sham wave functions is de-
rived. In Sec. II C, a general form of the LSDA+U force
formula is derived from the implicit and explicit depen-
dences of the total-energy functional on the atomic positions.

A. LSDA+U energy functional

In Sec. II A, we will present briefly the LSDA+U total-
energy functional to be used in deriving the LSDA+U force
formula in the following subsections. Among various forms
of the LSDA+U total-energy functional, we will consider in
the present work the rotationally invariant form for the on-
site Coulomb-energy term and the fully localized limit for
the double-counting term. This LSDA+U total-energy func-
tional will become the start point in deriving the force for-
mula in the following subsections.

In the LSDA+U formalism, the total-energy functional is
the sum of the LSDA energy functional ELSDA and a correc-
tion term EU which originates from the on-site Coulomb in-
teraction among d �or f� electrons. Thus, the total-energy
functional per unit cell in the LSDA+U scheme is given by

ELSDA+U�n�r�,���� = ELSDA�n�r�,���� + EU�n�r�,���� ,

�1�

where n�r� is the ground-state electron density at position r
and ��� are the positions of atoms. The LSDA energy func-
tional ELSDA per unit cell is defined as1,2

ELSDA = �
nk�

fnk
� �

�

d3r�nk
� �r��	−

�2

2m
�2
�nk

� �r�

+
e2

2
�

�

d3r�
V

d3r�
n�r�n�r��
�r − r��

+ Exc�n↑�r�,n↓�r��

+ �
nk�

fnk
� �

�

d3r�
V

d3r��nk
� �r��Vext�r,r���nk

� �r�� + Eii,

�2�

where � and V are the unit-cell volume and the sample vol-
ume, respectively, �nk

� is the Kohn-Sham eigenfunction of
the nth band of wavevector k in the first Brillouin zone and
spin �, n↑�↓��r� is the density of spin-up �spin-down� elec-

trons, Exc is the LSDA exchange-correlation energy per unit
cell, Vext�r ,r�� is the electron-ion interaction potential, which
is generally nonlocal in pseudopotential methods, and Eii is
the Coulomb repulsion energy between ions per unit cell.
Asterisks represent complex conjugate. The integral over the
sample volume V represents an integral over a real space
which is N times as large as the unit-cell volume �, where N
is the number of k vectors in the first Brillouin zone. The
factor fnk

� is the Fermi-Dirac distribution function divided by
N, which is

fnk
� =

1

N

1

e��nk
� −��/kBT + 1

, �3�

where �nk
� is the Kohn-Sham eigenvalue defined below, � is

the chemical potential, and T is the temperature. In Eq. �2�,
the Kohn-Sham eigenfunction is normalized as

�
�

d3r��nk
� �r��2 = 1 �4�

and the explicit dependences of Vext�r ,r�� and Eii on the
atomic positions ��� are omitted for simplicity. In the LSDA
scheme, the electron density is defined as

n��r� = �
nk

fnk
� �nk

� �r���nk
� �r� �5�

for each spin, and

n�r� = �
�

n��r� �6�

for both spins.
In this work, we employ the rotationally invariant form

for the on-site Coulomb interaction among d �or f� electrons
and take the fully localized limit13 for the double-counting
term. Then, the correction term EU is

EU =
1

2 �
�m��

��m,m��Vee�m�,m�nmm�
� nm�m�

−�

+ ��m,m��Vee�m�,m� − �m,m��Vee�m�,m��nmm�
� nm�m�

� �

− �
�

1

2
U�n��n� − 1� + �

��

1

2
J�n�

��n�
� − 1� , �7�

where m denotes the projector 	m for the density matrix
nmm�

� , covering all z components of the angular momenta of d
�or f� orbitals of transition-metal atoms in the unit cell. The
parameters U� and J� represent the Coulomb interaction
among d �or f� electrons in the �th atom in the unit cell. The
matrix elements �m ,m��Vee�m� ,m� are zero if all the projec-
tors 	m, 	m�, 	m�, and 	m� are not associated with a same
atom. The density matrix nmm�

� and its reduced forms, n�
� and

n�, for the �th atom are given by

nmm�
� = �

nk
fnk

� ��nk
� �	m,�m+R�	m�,�m�+R��nk

� 
�m,�m�, �8a�

n�
� = �

m

nmm
� 
�m,��, �8b�
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n� = �
�

n�
�, �8c�

where �	m,�m+R represents the projector 	m located at �m

+R in the unit cell at R, �� is the position of the �th atom in
the unit cell at R=0, and the bracket �f �g of two functions
f�r� and g�r� is defined as

�f �g = �
V

d3rf�r��g�r� . �9�

With this definition of the bracket, the normalization condi-
tion of Eq. �4� becomes ��nk

� ��nk
� =N. The projectors 	m are

short ranged so that projectors associated with different at-
oms do not overlap with each other, making the density ma-
trix nmm�

� nonzero only when the two projectors 	m and 	m�
are at the same atom �i.e., �m=�m��, and satisfying the sum
rule.10 The density matrix nmm�

� is independent of R because
the Kohn-Sham wave functions satisfy the Bloch theorem. In
Eq. �7�, the matrix elements of the Coulomb interaction are
defined conceptually and parameterized as

�m,m��Vee�m�,m�

=� � d3rd3r�
	m�r��	m��r���	m��r�	m��r��

�r − r��

= �
k

ak�m,m�,m�,m��Fk, �10�

where the integer k is in the range 0�k�2l. The coefficients
ak�m ,m� ,m� ,m�� have the angular-momentum dependence
of the projectors and are given by

ak�m,m�,m�,m�� =
4

2k + 1 �
q=−k

k

�lm�Ykq�lm��lm��Ykq
� �lm� .

�11�

Here, the basis �lm is the complex spherical harmonics, and
the coefficient, ak, can be expressed using the Wigner 3− j
symbols as follows:

ak�m,m�,m�,m�� = �
q=−k

k

�2l + 1�2�− 1�m+q+m�

� 	 l k l

0 0 0

2	 l k l

− m q m�



� 	 l k l

− m� − q m�

 . �12�

The coefficients Fk are radial integrals of the Coulomb inter-
action. In the case of d electrons �l=2�, we need only three
coefficients F0, F2, and F4 in Eq. �10� since the others be-
come zero by symmetry. If one takes unscreened Coulomb
interaction, or a specific dielectric constant, one may evalu-
ate Fks by integrating the Coulomb interaction radially. How-
ever, instead of evaluating the integration, Fks are regarded
as parameters in our work, as in previous LSDA+U studies.
In the case of d orbitals, the coefficients Fks are related with
the commonly used parameters U and J as U=F0, J= �F2

+F4� /14, and F4 /F2�0.625.11 In Eq. �7�, the parameters for
the �th atom are denoted by U� and J�. The last line in Eq.
�7� is the double-counting term which is the mean-field ap-
proximation of the orbital-dependent Coulomb interaction.
An explicit derivation of the double-counting term is pre-
sented in Appendix A.

In summary, we presented in Sec. II A the LSDA+U
total-energy functional �Eqs. �1�, �2�, and �7�� based on the
rotationally invariant form of the on-site Coulomb interac-
tion and the fully localized limit of the double-counting term.
This energy functional will be the starting point in deriving
the LSDA+U atomic-force formula in the following sub-
sections .

B. Variation in the LSDA+U functional
due to density variation

We will consider in Sec. II B the variation in the LSDA
+U total-energy functional arising from arbitrary variation in
the Kohn-Sham wave functions and introduce the Kohn-
Sham Hamiltonian and equation. The variation in the total-
energy functional in the LSDA scheme is derived in
literatures2,14 and the effective potential for rotationally in-
variant EU energy functional is presented in Lichtenstein et
al.11 The variation in LSDA+U energy functional and the
Kohn-Sham Hamiltonian presented in Sec. II B will be used
in Sec. II C and the following sections.

In the LSDA method, the ground-state electron density
and the total energy are obtainable by minimizing the total-
energy functional with respect to the electron-density varia-
tion which is associated with the variation in the Kohn-Sham
wave functions as


n��r� = �
nk

fnk
� 
�nk

� �r���nk
� �r� + �

nk
fnk

� �nk
� �r��
�nk

� �r� ,

�13a�


n�r� = �
�


n��r� . �13b�

In the LSDA+U method, for the EU term the variation in the
density matrix is also needed and it is related to the variation
in the Kohn-Sham wave functions as follows:


nmm�
� = �

nk
fnk

� ��
�nk
� �	m,�m+R�	m�,�m�+R��nk

� 

+ ��nk
� �	m,�m+R�	m�,�m�+R�
�nk

� �
�m,�m�,

�14a�


n�
� = �

m


nmm
� 
�m,��, �14b�


n� = �
�


n�
�. �14c�

Then, the variation in the LSDA+U total-energy functional
with respect to the variation in the Kohn-Sham wave func-
tions can be written as
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ELSDA+U =
1

N
�
nk�

fnk
� ��
�nk

� �Ĥ���nk
�  + ��nk

� �Ĥ��
�nk
� � ,

�15�

where 
�nk
� is an arbitrary variation in the Kohn-Sham wave

function �nk
� , the factor 1 /N is introduced because the

bracket notation is defined as an integral over the sample
which is N times larger than the unit cell, and the Kohn-

Sham Hamiltonian Ĥ� is defined as

Ĥ� = ĤLSDA
� + �

Rmm�

�	m,�m+RVmm�
� �	m�,�m�+R� . �16�

In Eq. �16�, the ĤLSDA
� is the Kohn-Sham Hamiltonian in

LSDA scheme which is defined as

ĤLSDA
� �r��nk

� �r� = �−
�2

2m
�2 + VH�r� + Vxc

� �r���nk
� �r�

+ �
V

d3r�Vext�r,r���nk
� �r�� , �17�

where we used the Hartree potential

VH�r� � e2�
V

d3r�
n�r��

�r − r��
�18�

and the exchange-correlation potential

Vxc
� �r� �


Exc


n��r�
. �19�

The term Vmm�
� comes from the variation in the EU energy

functional


EU = �
mm��

Vmm�
� 
nmm�

� , �20�

leading to a form

Vmm�
� = �

m�m�

�m,m��Vee�m�,m�nm�m�
−�

+ �
m�m�

��m,m��Vee�m�,m�

− �m,m��Vee�m�,m��nm�m�
� − �

�
�U�	n� −

1

2



− J�	n�
� −

1

2

�
mm�
�m,��. �21�

The term Vmm�
� is zero if m and m� are associated with dif-

ferent atoms. By minimizing ELSDA+U with the constraint that
��nk

� ��nk
� =N, one can obtain the ground-state electron den-

sity and the total energy. The constrained minimization con-
dition corresponds to


ELSDA+U −
1

N
�
nk�

fnk
� �nk

� ��
�nk
� ��nk

�  + ��nk
� �
�nk

� � = 0,

�22�

where we have introduced �nk
� as Lagrange multipliers and

the condition reduces straightforwardly to the Kohn-Sham
equation

Ĥ���nk
�  = �nk

� ��nk
�  . �23�

In the expression of the Kohn-Sham equation, we can see
that the only change in the LSDA+U method is the orbital-
dependent interaction potential Vmm�

� occurring in the Kohn-
Sham Hamiltonian.

To summarize, we introduced in Sec. II B the Kohn-Sham
Hamiltonian in the LSDA+U method and expressed the
variation in the LSDA+U total-energy functional with re-
spect to arbitrary variation in the Kohn-Sham wave functions
�Eq. �15��. In Sec. II C, we will consider the change in the
LSDA+U total energy due to atomic displacements which
includes contributions from both the variation in the total-
energy functional �Eq. �15�� from the variation in the wave
functions and the explicit dependence of the total-energy
functional on the atomic positions.

C. Atomic-force formula in the LSDA+U method

We will derive in Sec. II C a general form of the LSDA
+U total-energy functional, considering both the explicit de-
pendence of the functional on atomic positions and the im-
plicit dependence of the functional on the change in the self-
consistent Kohn-Sham wave functions induced by atomic
displacements. The obtained general form will be used as the
start point for the atomic-force formula in the PAO-basis and
plane-wave-basis methods in Secs. III and IV, respectively.

In the DFT method, the atomic force can be obtained by
differentiating the total-energy functional with respect to
atomic positions �, which can be written as

FLSDA+U = −
d

d�
ELSDA+U�n�r�,���� , �24�

where the differentiation includes, in general, both explicit
and implicit dependences of the total-energy functional on
atomic positions �. The explicit ��� dependence in the total-
energy functional is due to the external potential Vext, ion-ion
interaction energy Eii, and atomic projectors in EU energy
functional. The implicit ��� dependence is due to the self-
consistent change 
�nk

� of the Kohn-Sham wave functions
caused by atomic displacements and can be described by Eq.
�15�. Thus, the variation in the total energy per unit cell by
the displacement of atomic positions is


ELSDA+U =
1

N
�
nk�

fnk
� ��
�nk

� �Ĥ���nk
�  + ��nk

� �Ĥ��
�nk
� �

+
1

N
�
nk�

fnk
� ��nk

� �
Vext��nk
�  + 
Eii

+ �
mm��

Vmm�
� 
nmm�

� , �25�
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where 
�nk
� is the self-consistent change in the Kohn-Sham

wave function caused by atomic displacements as mentioned
above and 
Eii represents the change in ion-ion interaction
energy due to atomic displacements. The variation in the
density matrix, 
nmm�

� , in Eq. �25� is not due to 
�nk
� but due

to the translation of projectors associated with the atom at �


nmm�
� = �

nk
fnk

� ���nk
� �
	m,�m+R�	m�,�m�+R��nk

� 

+ ��nk
� �	m,�m+R�
	m�,�m�+R��nk

� �
�m,�m�, �26�

which is different from 
nmm�
� of Eq. �14�. Then, the atomic

force exerted on the atom at � in the LSDA+U formalism is

F = −
1

N
�
nk�

fnk
� ��

d�nk
�

d�
�Ĥ���nk

�  + ��nk
� �Ĥ��

d�nk
�

d�
�

−
1

N
�
nk�

fnk
� ��nk

� �
�Vext

��
��nk

�  −
�Eii

��
− �

mm��

Vmm�
�

�nmm�
�

��
,

�27�

where the derivative of the density matrix in the last term is
given by

�nmm�
�

��
= �

nk
fnk

� ���nk
� �

�	m,�m+R

��m �	m�,�m�+R��nk
� 
�m,�

+ ��nk
� �	m,�m+R�

�	m�,�m�+R

��m�
��nk

� 
�m�,��
�m,�m�,

�28�

and the derivative d�nk
� /d� is the solution of

�Ĥ� − �nk
� ��

d�nk
�

d�
 = − 	dĤ�

d�
−

d�nk
�

d�

��nk

�  . �29�

Since the derivative of the Hamiltonian, dĤ� /d�, depends on
the derivative of the electron density, dn��r� /d�, and
dn��r� /d� depends on d�nk

� /d�, Eq. �29� is a complicated
self-consistent equation for d�nk

� /d�, requiring substantial
computing time and resource. Thus, in order to find a useful
atomic-force formula, it is essential to avoid calculating
d�nk

� /d�, as shown in the following sections. In the LSDA
+U formalism, the U term may contribute to the atomic

force via Ĥ� and Vmm�
� , which we elaborate in the following

sections with PAO-basis and plane-wave basis for the elec-
tronic wave functions.

We derived in Sec. II C a general form of the LSDA+U
atomic-force formula �Eqs. �27� and �28��, which will be
used in the following sections to derive atomic-force formula
in the PAO-basis and plane-wave-basis methods. The self-
consistent derivative of the Kohn-Sham wave functions with
respect to atomic positions will not appear in the atomic-
force formula derived in the following sections.

III. LSDA+U ATOMIC-FORCE FORMULA
IN PAO-BASIS METHODS

We consider in this section a representation of the atomic-
force formula in the case that the wave functions are ex-
panded with localized orbitals attached to atoms such as
PAOs. First, in Sec. III A, we will expand the Kohn-Sham
wave functions with PAOs and express the Kohn-Sham
equation using a PAO-basis set. Then, in Sec. III B, we will
derive PAO-basis representation of atomic-force formula in
the LSDA+U scheme.

A. The density matrix and Kohn-Sham equation
in a PAO-basis set

In Sec. III A, we express the Kohn-Sham wave functions
and equation using a PAO-basis set. These will be used
in Sec. III B for the atomic-force formula in PAO-basis
methods.

The Kohn-Sham wave function is represented in a PAO-
basis set as

�nk
� �r� = �

�R
Cnk�

� eik·���+R�	��r − �� − R� , �30�

where n is the band index, k is the wave vector in the first
Brillouin zone, and ��+R is the position of the �th orbital
	� in the unit cell at R. With ket symbols, we represent the
wave function as

��nk
�  = �

�R
Cnk�

� eik·���+R��	�,��+R �31�

and the norm of the wave function is

��nk
� ��nk

�  = �
��RR�

Cnk�
�� Cnk�

� eik·�R�−R�eik·���−���

� �	�,��+R�	�,��+R� . �32�

By translating the orbitals by −R, we obtain

��nk
� ��nk

�  = �
��RR�

Cnk�
�� Cnk�

� eik·�R�−R�eik·���−���

� �	�,���	�,��+R�−R �33�

and after denoting R�−R as R� and relabeling R� as R, we
have

��nk
� ��nk

�  = N �
��R

Cnk�
�� Cnk�

� eik·Reik·���−���S���R�

= N�
��

Cnk�
�� Cnk�

� S���k� , �34�

where N is the number of lattice vectors or equivalently the
number of unit cells in the sample. The overlap matrices
S���R� and S���k� in Eq. �34� are defined as

S���R� � �	�,���	�,��+R

= �
V

d3r	��r − ����	��r − �� − R� , �35a�
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S���k� � �
R

eik·���−��+R�S���R� , �35b�

where R are lattice vectors. Since the basis functions 	��r�
are short ranged, the integration over the sample is effec-
tively equivalent to integration over infinite volume, and
S���R� is zero if ���−��+R� is greater than the sum of the
spatial extents of the two basis functions. Thus, the summa-
tion over R in the definition of S���k� includes only a finite
number of R for nonzero S���R�. Since ��nk

� ��nk
� =N, the

normalization condition becomes

�
��

Cnk�
�� Cnk�

� S���k� = 1. �36�

Now, we consider PAO-basis representation of the density
matrix of Eq. �8a�. The projection of Kohn-Sham wave func-
tion to a projector 	m� becomes

�	m�,�m���nk
�  = �

�R
Cnk�

� eik·���+R��	m�,�m��	�,��+R

= �
�R

Cnk�
� eik·�R+���Sm���R�

= �
�

Cnk�
� eik·�m�

Sm���k� �37�

and its complex conjugate is

��nk
� �	m,�m = �

�R
Cnk�

�� e−ik·�R+���S�m�− R�

= �
�

Cnk�
�� e−ik·�m

S�m�k� , �38�

where we have used S���R��=S���−R�. Then, the density
matrix nmm�

� can be expressed as

nmm�
� = �

knRR���

fnk
� Cnk�

�� Cnk�
� eik·���−���eik·�R�−R�

� S�m�− R�Sm���R��
�m,�m�

= �
kn��

fnk
� Cnk�

�� Cnk�
� S�m�k�Sm���k�
�m,�m�. �39�

Here, we have used eik·��m�−�m�=1 for �m=�m�. As shown in
Eq. �39�, in the PAO-basis method, the density matrix nmm�

� is
a product of the two overlap matrices and the coefficients
Cnk�

�� Cnk�
� .

Starting from Eq. �23�, the Kohn-Sham equation using a
PAO-basis set is expressed as

�	�,���Ĥ���nk
�  = �nk

� �	�,����nk
�  . �40�

With the wave function expanded with the PAO basis, the
left-hand side of Eq. �40� becomes

�	�,���Ĥ���nk
�  = �

�R
Cnk�

� eik·���+R��	�,���Ĥ��	�,��+R

= �
�R

Cnk�
� eik·���+R�H��

� �R�

= �
�

eik·��
H��

� �k�Cnk�
� , �41�

where we used the following definitions which are consistent
with Eqs. �35a� and �35b�:

H��
� �R� � �	�,���Ĥ��	�,��+R

= �
V

d3r	��r − ����Ĥ�	��r − �� − R� , �42a�

H��
� �k� � �

R
eik·���−��+R�H��

� �R� . �42b�

By using Eq. �37�, the right-hand side of Eq. �40� can be
expressed as

�	�,����nk
�  = �

�

eik·��
S���k�Cnk�

� . �43�

Therefore, the Kohn-Sham equation in PAO-basis methods
becomes

�
�

H��
� �k�Cnk�

� = �nk
� �

�

S���k�Cnk�
� . �44�

This is a generalized eigenvalue problem in which eigenvec-
tors correspond to the coefficients of the wave functions ex-
panded with pseudoatomic orbitals.

We expressed in Sec. III A the Kohn-Sham wave func-
tions �Eq. �31�� and the Kohn-Sham equation �Eq. �44�� us-
ing a PAO-basis set. These expressions will be used in Sec.
III B for the atomic-force formula in PAO-basis methods.

B. LSDA+U atomic-force formula in PAO-basis
methods

Considering the Pulay correction, we will derive in Sec.
III B atomic-force formula in PAO-basis methods where
wave functions are expanded with PAOs located at atomic
positions.

In PAO-basis methods, the Kohn-Sham wave functions
which are obtained self-consistently from the Kohn-Sham
equation minimize the total-energy functional for arbitrary
variations in the wave functions as long as they can be ex-
panded with given basis orbitals. Thus, if the Kohn-Sham
wave functions are varied with no change in the basis orbit-
als, there is no first-order change in the total energy. How-
ever, if the wave functions are changed with some changes in
the basis orbitals, there exists first-order change in the total
energy, since the changes in the basis orbitals are not consid-
ered in the minimization of the total-energy functional.

In order to calculate atomic forces, one needs to know the
variation in the total-energy functional caused by atomic dis-
placements. When an atom is shifted from its original posi-
tion in a PAO-basis method, the shift makes some basis-
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function changes as well as changes in the Kohn-Sham
equation. We first consider the change in the Kohn-Sham
wave function induced by atomic displacements. Since both
coefficients and pseudoatomic orbitals may change, in gen-
eral, by using Eq. �31�, we can express the variation in the
Kohn-Sham wave function as follows:

�
�nk
�  = �

�R
eik·R�
�eik·��

Cnk�
� ��	�,��+R

+ eik·��
Cnk�

� �
	�,��+R� . �45�

There is no change in the exponential term since the change
in an atom position does not have any effect on either the
lattice vector R or the crystal momentum vector k. In Eq.
�45�, the variation in the basis orbital, 
	�,��+R, can be cal-
culated easily but the variation in the coefficients, 
Cnk�

� ,
requires self-consistent calculations. Thus, it is very impor-
tant to modify the expression of the total-energy variation
�Eq. �25�� to a form which does not have 
Cnk�

� explicitly, as
follows. When Eq. �25� is expressed using pseudoatomic or-
bitals, the first term in the square bracket becomes

�
�nk
� �Ĥ���nk

�  = �
�R

e−ik·R�
�e−ik·��
Cnk�

�� ��	�,��+R�Ĥ���nk
� 

+ e−ik·��
Cnk�

�� �
	�,��+R�Ĥ���nk
� �

= N�nk
� �

��


�e−ik·��
Cnk�

�� �eik·��
S���k�Cnk�

�

+ N �
��R�

eik·���−��+R��Cnk�
��

�Cnk�
� �
	�,���Ĥ��	�,��+R� , �46�

where we have used the Kohn-Sham equation in the PAO
method

�	�,��+R�Ĥ���nk
�  = eik·R�	�,���Ĥ���nk

� 

= eik·R�nk
� �

�

eik·��
S���k�Cnk�

� �47�

and the expansion of the wave functions

�
	�,��+R�Ĥ���nk
�  = eik·R�
	�,���Ĥ���nk

� 

= eik·R�
�R�

Cnk�
� eik·���+R��

��
	�,���Ĥ��	�,��+R� . �48�

Similarly, we can express the second term in the square
bracket as follows:

��nk
� �Ĥ��
�nk

�  = N�nk
� �

��

e−ik·��
Cnk�

�� 
�eik·��
Cnk�

� �S���k�

+ N �
��R�

eik·���−��+R��Cnk�
��

�Cnk�
� �	�,���Ĥ��
	�,��+R� . �49�

We rewrite the normalization condition as

�
��

�e−ik·��
Cnk�

�� ��eik·��
Cnk�

� �eik·���−���S���k� = 1 �50�

and consider its variation under atomic displacements. Since
the normalization condition is invariant under atomic dis-
placements, we obtain a relation

�
��

eik·��

�e−ik·��

Cnk�
�� �Cnk�

� S���k�

+ �
��

Cnk�
�� e−ik·��


�eik·��
Cnk�

� �S���k�

= − �
��

eik·���−���Cnk�
�� Cnk�

� 
�eik·���−���S���k�� . �51�

By exploiting this relation in order to convert the variation in
the expansion coefficients, Cnk�

�� and Cnk�
� , to that in the over-

lap matrix S���k�, we have

�
�nk
� �Ĥ���nk

�  + ��nk
� �Ĥ��
�nk

�  = − N�
��

Cnk�
�� Cnk�

� eik·���−����nk
� 
�eik·���−���S���k��

+ N �
��R

Cnk�
�� Cnk�

� eik·���−��+R���	�,���Ĥ��
	�,��+R + �
	�,���Ĥ��	�,��+R�

= N �
��R

Cnk�
�� Cnk�

� eik·���−��+R���	�,���Ĥ� − �nk
� �
	�,��+R + �
	�,���Ĥ� − �nk

� �	�,��+R� . �52�

Here, we have used


�eik·���−���S���k�� = �
R


�eik·RS���R�� = �
R

eik·R��
	�,���	�,��+R + �	�,���
	�,��+R� . �53�

Thus, the change in the total energy per unit cell due to the atomic displacements is
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ELSDA+U = �
nk���R

fnk
� Cnk�

�� Cnk�
� eik·���−���eik·R

� ��	�,���Ĥ� − �nk
� �
	�,��+R + �
	�,���Ĥ�

− �nk
� �	�,��+R� +

1

N
�
nk�

fnk
� ��nk

� �
Vext��nk
� 

+ �
mm��

Vmm�
� 
nmm�

� + 
Eii. �54�

Evaluation of this expression requires the self-consistent
Kohn-Sham wave functions without atomic displacements

and change in basis orbitals due to atomic displacements but
it does not require any self-consistent change in the wave-
function coefficients. The first term in Eq. �54� is called Pu-
lay correction which comes from the incompleteness of the
PAO basis.

In order to obtain the atomic force exerted on the �th
atom in the unit cell, we suppose that an atom located at ��

experiences an infinitesimal position change

�� → �� + 
��. �55�

By using Eq. �54�, a force exerted on the �th atom in PAO-
basis methods, F�

LSDA+U, becomes

F�
LSDA+U = − �

nk���R
fnk

� Cnk�
�� Cnk�

� eik·���−���eik·R��	�,���Ĥ� − �nk
� �

�	�,��+R

��� 
��,�� + �
�	�,��

��� �Ĥ� − �nk
� �	�,��+R
��,���

−
1

N
�
nk�

fnk
� ��nk

� �
�Vext

��� ��nk
�  −

�Eii

��� − �
nkmm��

fnk
� Vmm�

� ���nk
� �

�	m,�m

��m �	m�,�m���nk
� 
�m,��

+ ��nk
� �	m,�m�

�	m�,�m�

��m�
��nk

� 
�m�,��� �56�

since the variation in 	� with respect to the atomic displacement 
�� is given by


	��r − �� − R� = 
��,��

�	��r − �� − R�
��� 
��. �57�

By using ĤLSDA
� defined in Eq. �17�, the force formula in Eq. �56� can be expressed as

F�
LSDA+U = − �

nk���R
fnk

� Cnk�
�� Cnk�

� eik·���−���eik·R��	�,���ĤLSDA
� − �nk

� �
�	�,��+R

��� 
��,�� + �
�	�,��

��� �ĤLSDA
� − �nk

� �	�,��+R
��,���
−

1

N
�
nk�

fnk
� ��nk

� �
�Vext

��� ��nk
�  −

�Eii

��� − �
nk��mm��RR�

fnk
� Vmm�

� Cnk�
�� Cnk�

� eik·���−���eik·�R−R��

�
�

��� ��	�,��+R��	m,�m�	m�,�m��	�,��+R� . �58�

Here we have also used an expression

�

��� ��	�,��+R��	m,�m�	m�,�m��	�,��+R� = �
�	�,��+R�

��� �	m,�m�	m�,�m��	�,��+R
��,�� + �	�,��+R��
�	m,�m

��m �	m�,�m��	�,��+R
�m,��

+ �	�,��+R��	m,�m�
�	m�,�m�

��m�
�	�,��+R
�m�,�� + �	�,��+R��	m,�m�	m�,�m��

�	�,��+R

��� 
��,��.

�59�
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In Eq. �58�, the first three terms correspond to the atomic
force in the LSDA formalism and the last term is the addi-
tional term arising from the on-site Coulomb interaction.
Thus, one can implement our LSDA+U force formula easily
by adding the last term to an available computer code for
LSDA force formula. However, one should note that, al-
though the first three terms in the LSDA+U force formula
are the same as the LSDA force formula, their actual values
are usually different due to the difference in the Kohn-Sham
wave functions obtained self-consistently in each method.
We define the last term of F�

LSDA+U in Eq. �58� as F�
U

F�
U = − �

nk��RR�mm��

fnk
� eik·���−���eik·�R−R��Vmm�

� Cnk�
�� Cnk�

�

�
�

��� ��	�,��+R��	m,�m�	m�,�m��	�,��+R� . �60�

We note that the expression of F�
U is simplified by adding

Pulay contribution and that F�
U is proportional to the deriva-

tive of the products of two overlap matrices with respect to
atomic positions.

We derived in this section the LSDA+U force formula
�Eq. �58�� in the PAO method. The obtained formula can be
regarded as the sum of the LSDA force formula and an ad-
ditional term given by Eq. �60�. Thus, our LSDA+U force
formula can be easily implemented if a proper LSDA code is
available.

IV. LSDA+U ATOMIC-FORCE FORMULA
IN PLANE-WAVE-BASIS METHODS

We will derive in this section an atomic-force formula
using the plane-wave-basis method. Since plane waves are
independent of atomic displacements, there is no Pulay cor-
rection term. We will first express the density matrix with the
plane-wave-basis set and then derive LSDA+U atomic-force
formula.

In plane-wave-basis methods, the Kohn-Sham wave func-
tion is given in the Bloch form

�nk
� �r� =

1
��

�
G

Cn,k+G
� ei�k+G�·r, �61�

where � is the unit-cell volume and G is a reciprocal-lattice
vector. We represent the Kohn-Sham wave function with ket
symbols as

��nk
�  = �

G
Cn,k+G

� �k + G , �62�

where �k+G represents 1
��

ei�k+G�·r. Using the plane-wave
basis, we express the density matrix of Eq. �8a� as

nmm�
� = �

nk
fnk

� ��nk
� �	m,�m+R�	m�,�m�+R��nk

� 
�m,�m�

= �
nkGG�

fnk
� Cn,k+G�

�� Cn,k+G
�

��k + G��	m,�m+R�	m�,�m�+R�k + G
�m,�m�.

�63�

The change in the Kohn-Sham wave function due to atomic
displacements can be written as

�
�nk
�  = �

G

Cn,k+G

� �k + G , �64�

where �k+G is not affected by atomic displacements. This
change in the Kohn-Sham wave function does not contribute
to the change in the total energy in the first order because the
total energy is the value of the energy functional when it is
minimized with respect to all possible variations in the wave
functions. Thus the variation in the total energy is expressed
as


ELSDA+U =
1

N
�
nk�

fnk
� ��nk�
Vext��nk

�  + 
Eii

+ �
mm��

Vmm�
� 
nmm�

� , �65�

where the variation in density matrix 
nmm�
� is due to the

translation of projectors and it is given by Eq. �26�.
Now, we suppose that the position of an atom located at

�� is changed such that

�� → �� + 
��. �66�

Then, the atomic force exerted on the �th atom in the plane-
wave-basis method is

F�
LSDA+U = −

1

N
�
nk�

fnk
� ��nk

� �
�Vext

��� ��nk
�  −

�Eii

��� − �
nkmm�GG��

fnk
� Cn,k+G�

�� Cn,k+G
�

�Vmm�
� ��k + G��

�	m,�m

��m �	m�,�m��k + G
�m,�� + �k + G��	m,�m�
�	m�,�m�

��m�
�k + G
�m�,���

= −
1

N
�
nk�

fnk
� ��nk

� �
�Vext

��� ��nk
�  −

�Eii

��� − �
nkmm�GG��

fnk
� Cn,k+G�

�� Cn,k+G
� Vmm�

� �

��� ��k + G��	m,�m�	m�,�m��k + G� , �67�
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where we exploit the fact that plane-wave basis is invariant
under any atomic displacement. Here, the atomic force FU

contributed by Vmm�
� is

F�
U = − �

nkmm�GG��

fnk
� Cn,k+G�

�� Cn,k+G
� Vmm�

�

�
�

��� ��k + G��	m,�m�	m�,�m��k + G� . �68�

This is similar to F�
U in PAO-basis method �Eq. �60�� but F�

U

in Eq. �60� includes contribution from displacements of basis
functions.

Our derived LSDA+U atomic-force formula in the PAO
and plane-wave methods does not require any information on
the self-consistent change in the wave functions resulting
from atomic displacements. In both of the two methods, the
normalization condition of the Kohn-Sham wave function is
useful to avoid any occurrence of the self-consistent varia-
tion of the wave functions in the force formula. This is re-
lated, in literatures, to the Pulay correction in the PAO
method and the Hellmann-Feynman theorem in the plane-
wave method, respectively.

V. TEST OF THE ATOMIC-FORCE FORMULA

We test our LSDA+U implementation to the SIESTA �Ref.
12� code and our LSDA+U force formula. In Sec. V A, we
perform LSDA+U calculations for NiO and MnO to obtain
lattice structures, magnetic moments, and band gaps in the
antiferromagnetic phase and we compare our result with pre-
vious calculations as well as experimental measurements. In
Sec. V B, we test out atomic-force formula by comparing
results of our force formula with the numerical derivatives of
the total-energy values.

A. Atomic and electronic structures of NiO and MnO

In our present work, we implemented to the SIESTA pack-
age the PAO-based LSDA+U method described in previous
sections, and applied it to atomic and electronic structures in
NiO and MnO, which will be presented in Sec. V A. We also
implemented our LSDA+U force formula to the SIESTA

package and its results will be presented in Sec. V B.
NiO and MnO are insulators in which magnetic moments

are ordered antiferromagnetically at low temperatures below
Néel temperatures �525K for NiO and 116 K for MnO �Ref.
15��, as shown in Fig. 1. The magnetic moments are in par-
allel within each �111� plane while they are in antiparallel
between adjacent planes. It is known that this antiferromag-
netic spin ordering distorts the original cubic structure of
NiO and MnO slightly to a lower-symmetric rhombohedral
structure. The known spin ordering and the rhombohedral
unit cell are shown in Fig. 1.

Atomic, magnetic, and electronic structures of NiO and
MnO are studied by our implementation of the LSDA+U
method. Calculations are done with 8�8�8 k points
in the full Brillouin zone and with cut-off energy of 1500 Ry
for real-space grid. Troullier-Martins norm conserving
pseudopotentials16 are used. For both Ni and Mn atoms,

semicore pseudopotentials are generated with 3s and 3p elec-
trons as valence electrons as well. With the semicore states,
the large cut-off energy is used in order to suppress the error
which could occur in the real-space integration. In the SIESTA
code, the large cut-off energy does not increase computation
time substantially, since increased real-space grid is used
only for calculating the Kohn-Sham effective potential. Elec-
tronic wave functions are expanded with localized pseudo-
atomic orbitals �double-zeta polarization-basis set�. For the
LSDA+U energy functional, the values of U and J param-
eters are assigned as 8.0 eV and 0.95 eV for NiO, and 6.9 eV
and 0.86 eV for MnO, respectively.4

Table I shows obtained lattice structures by minimizing
the LSDA+U total-energy functional with respect to lattice
vectors. Starting from the experimental structure, we calcu-
late the total energy for each set of lattice vectors whose
magnitudes are varied by 1% of their initial values. While
the lattice vectors are varied, atomic positions are kept in
symmetric positions since all the Ni, Mn, or O atoms are
equivalent within each kind. Using a least-square fit, we ob-
tain lattice vectors for the lowest total energy, which are very
close to the experimental data. It is worth noting that in the
structure of minimal LSDA+U total energy, the LSDA stress
formula produces significant residual pressure which is about
−6 kBar for NiO and −7 kBar for MnO. If the stress for-
mula of the LSDA method were valid in LSDA+U scheme,
there would be almost no pressure left in the structure of the
minimum total energy. This indicates that the stress formu-
lation needs to be developed in LSDA+U scheme.

In Table I, we also present band gaps and magnetic mo-
ments calculated by the LSDA+U method and the LSDA
method, and compare our results with the experimental data.

FIG. 1. �Color online� The atomic and magnetic structure of
NiO and MnO. �a� Cubic rock-salt structure of NiO and MnO above
the Néel temperature �TN�. Large dots �both dark and light blue
�gray�� represent metal atoms and small �orange �gray�� dots are O
atoms. Below TN, magnetic moments of metal atoms are aligned
ferromagnetically within each �111� plane and antiferromagnetically
along the �111� direction. Together with the magnetic ordering, the
lattice structure is contracted along the �111� direction, transforming
to a lower-symmetric rhombohedral structure. The dark and light
blue colors �grays� of the large dots represent up spin and down
spin, respectively, and the three arrows are lattice vectors of the
rhombohedral unit cell with two metal atoms and two O atoms. The
angle � represents rhombohedral distortion angle. �b� A ferromag-
netic �111� plane of metal atoms and a Cartesian coordinate system.
The x and y axes are the first and second nearest-neighbor direc-
tions within the plane, respectively, and the z axis is the out-of-
plane direction.
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We find that for both NiO and MnO, our calculated lattice
constants, magnetic moments, and band-gap values in the
LSDA+U scheme are closer to the experimental data than
results from the LSDA scheme. Especially the band-gap val-
ues by LSDA+U calculations are substantially enhanced
compared with LSDA results. Even though the band gap is
underestimated, our LSDA+U calculations predict insulating
ground states whereas the LSDA calculations predict small-
gap semiconducting ground states. The underestimation of
the band gaps even in the LSDA+U method is understand-
able in the sense that calculational results based on DFT
describe ground-state properties accurately but not the
excited-state properties of materials such as the band gap.
For antiferromagnetic spin moments, values obtained by our
LSDA+U implementation are within the experimental range.

In the structure of minimum total energy, band structures
of NiO and MnO are obtained along the high-symmetry lines
of the rhombohedral structure, as shown in Fig. 2. Our cal-
culated band structures are similar to other calculational
results.26,27 This also implies that the LSDA+U method is
successfully implemented in our present work.

B. Test of the atomic-force formula

We test our atomic-force formula by comparing the force
values and the total-energy values. From the density-
functional methods, the atomic force exerted on an atom
should be equal to the derivative of the total-energy func-

tional with respect to the displacement of the atom. With
antiferromagnetic NiO, we calculate the atomic force and the
total energy in the LSDA+U method with either Ni or O
atom displaced by −0.2 Å to 0.2 Å along x, y, or z direc-
tion. As plotted in Fig. 3, the obtained total-energy values are
well fit to quadratic curves and the force values are fit to
almost linear curves with respect to the displacement of Ni
or O atom. When the values from our force formula and
numerical derivatives of the total-energy curves are com-
pared quantitatively, as shown in Fig. 3, they agree well with
each other, confirming the validity of our force formula. We
also compare second derivatives of total-energy curves and
first derivatives of atomic forces, and find, as shown in Table
II, that they agree with each other, within 2% difference,
supporting strongly the validity of our implementation.

VI. FROZEN-PHONON CALCULATION OF NiO AND MnO

As an application, we apply our LSDA+U force formula
to calculate the zone-center transverse-optic �TO� phonon
frequencies in NiO and MnO. By the frozen-phonon method,
TO phonon energies are calculated for the �111� mode and
the in-plane mode which are illustrated in Fig. 4. In addition,
phonon frequencies are calculated by LSDA+U and LSDA
methods in the same structure to see how the presence of the
EU term in the energy functional affects phonon frequencies.
The calculational results are presented in Table III including
results from plane-wave LSDA+U method and those from
experiments.

TABLE I. Calculated and experimental lattice constants a �Å�, rhombohedral distortion angles � �° �, spin
magnetic moments M ��B�, and band gaps Eg �eV� of NiO and MnO.

NiO MnO

a � M Eg a � M Eg

Calc.�LSDA� 4.15 91.5 1.31 0.83 4.37 92.0 4.49 0.87

Calc. �LSDA+U� 4.19 90.1 1.73 2.7 4.42 91.0 4.74 1.44

Expt. 4.17a 90.075a 1.64b,1.77c, 4.0e,4.3f 4.445g 90.62h 4.58d−4.79c 3.9i

1.90d

aReference 17.
bReference 18.
cReference 19.
dReference 20.
eReference 21.

fReference 22.
gReference 23.
hReference 24.
iReference 25.
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FIG. 2. LSDA+U band structures of �a� NiO and �b� MnO along high-symmetry lines. �c� The first Brillouin zone of the rhombohedral
structure.
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Table III shows that our results agree with plane-wave-
based LSDA+U results with differences less than 6% and
also are in good agreement with experimental results except
for the in-plane phonon frequencies of NiO. In experimental
results, the phonon frequency of the in-plane mode in NiO is
lower than the frequencies of the �111� mode whereas our
calculation predicts that the in-plane mode is higher in fre-
quency than the �111� mode. This discrepancy is also dis-
cussed by Luo et al.28 and needs further investigation.

We also study the effect of EU term in the energy func-
tional on phonon frequencies by comparing the results of
LSDA+U calculations with those of LSDA calculations. As
shown in Table III, we obtain that introduction of the EU

term substantially increases phonon frequencies of both the
�111� and the in-plane modes, decreasing their splitting. As
shown in Table III, the FU term is found to contribute only
about 0.5% and 1% to the phonon frequencies of NiO and
MnO, respectively, implying that the difference in the atomic
forces in the LSDA+U method and the LSDA method is not
mainly due to the presence of the FU term in the force for-

mula but due to the difference in the self-consistent electron
densities in the two methods. Since the EU term in the
LSDA+U energy functional corrects the exchange-
correlation energy, the small contributions of FU to the
atomic forces in NiO and MnO are consistent with the fact
that the exchange-correlation energy has no contribution to
the atomic force in the exact DFT. A detailed discussion on
this is presented in Appendix B. Although it turns out that the
FU term has small contribution in NiO and MnO, we do not
know yet whether the term would also be small in other
materials in general.

VII. SUMMARY

We have presented the derivation of atomic-force formula
in the LSDA+U method, considering the rotationally invari-
ant form of EU energy functional, the fully localized limit of
the double-counting term, and either PAOs or plane waves
for the basis of the wave functions. In the case of PAO-basis
methods, Pulay correction is considered and included to the
atomic-force formula. As a test of our force formula, we
compared the atomic forces from our force formula with the
numerical derivatives of the curves fit to the total-energy
values and they agree well with each other, supporting the
validity of our implementation. As an application, we calcu-
late TO phonon frequencies of NiO and MnO and they are
consistent with the results from plane-wave-basis LSDA
+U method as well as those from experiments. It turns out
that, in NiO and MnO, the difference in forces in the LSDA
and the LSDA+U methods originates mainly from the dif-
ference in the self-consistent electron densities in the two
methods and that the additional term appearing in our
LSDA+U atomic-force formula produces small contribution.
It seems reasonable since it is only the exchange-correlation
energy functional that is different in the LSDA and the
LSDA+U methods but more extensive study is required on
this issue. Although we derived the atomic-force formula for
a specific form of the LSDA+U energy functional, our deri-
vation procedure of the force formula can easily be general-
ized to different forms of the LSDA+U method. Our
LSDA+U atomic-force formula requires almost negligible
computational resources in calculating forces in the LSDA
+U method so it will be very useful in optimizing atomic
structure and investigating the vibrational structures of
strongly correlated materials using the LSDA+U method.

FIG. 4. �Color online� �a� �111� phonon mode for NiO and
MnO. �b� In-plane phonon mode for NiO and MnO. Arrows repre-
sent atomic displacements in each phonon mode.
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FIG. 3. LSDA+U total energies and forces vs atomic displace-
ments in NiO. �a� Increase in ELSDA+U per rhombohedral unit cell
when one Ni atom in the rhombohedral unit cell is displaced in the
x, y, or z direction, and �b� the LSDA+U force exerted on the
displaced Ni atom. �c� Increase in ELSDA+U per rhombohedral unit
cell when an O atom is displaced instead of Ni, and �d� the
LSDA+U force exerted on the displaced O atom. In �a� and �c�,
points are values of ELSDA+U and curves are least-square fit to the
points. In �b� and �d�, points are atomic forces obtained from our
LSDA+U force formula, while curves are the derivatives of the
total-energy curves in �a� and �c�, respectively. The x, y, and z
directions are the same as those shown in Fig. 1�b�.

TABLE II. Calculated second derivatives of the total energy and
first derivatives of atomic forces �in eV /Å2� in NiO.

Direction

Ni atoms O atoms

− �2

�Ri
2 ELSDA+U �Fi

�Ri
− �2

�Ri
2 ELSDA+U �Fi

�Ri

x −9.550 −9.597 −8.399 −8.487

y −9.528 −9.532 −8.393 −8.463

z −16.134 −16.076 −12.598 −12.553
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APPENDIX A: DERIVATION OF THE DOUBLE
COUNTING TERM IN EU

The EU energy functional deals with the on-site Coulomb
interaction between d �or f� orbitals. Since the interaction is
also considered in the Exc in the LSDA total-energy func-
tional, we should subtract the contribution of the interaction
considered in Exc from EU. Alternatively, we can subtract
Edc, which is mean-field evaluation of EU, from EU energy
functional. Two methods are often used to calculate double-
counting term. One is fully localized limit �FLL� and the
other is around mean field.3,30 We consider FLL, in the
present work. In the FLL method, it is assumed that the
density matrix is diagonal and can be written as

nmm�
� = 
mm�nmm

� . �A1�

This is valid in the sense that one can always diagonalize the
density matrix. Thus, we can write the Edc as

Edc =
1

2 �
�m��

��m,m��Vee�m�,m�
mm��nmm
� 
m�m��nm�m�

−� 

+ ��m,m��Vee�m�,m� − �m,m��Vee�m�,m��

� 
mm�
m�m��nmm
� nm�m�

� � , �A2�

where the bracket on the density matrix denotes the averaged
value. For the first term, we have separately taken the aver-
age of each of the two density matrices because the spin
components are different. Since each orbital can be occupied
with the same probability in the mean-field approximation,
�nmm

�  is given by

�nmm
�  =

2lCn�−1

2l+1Cn�

=
n�

2l + 1
. �A3�

For the last term in Eq. �A2�, we cannot separately calculate
each density matrix because the two density matrices have
the same spin. In this case, we have

�nmm
� nm�m�

�  = 
mm�
n�

2l + 1
+ �1 − 
mm��

n�

2l + 1

n� − 1

2l
.

�A4�

In the case of m=m�, the product of two identical density
matrices is just equal to one of them since each orbital is
occupied by either zero or one electron of the given spin. The
second term corresponds to the case of m�m�. Since the two
orbitals are different, the probability of finding the two orbit-
als occupied simultaneously is given by

2l−1Cn�−2

2l+1Cn�

=
n�

2l + 1

n� − 1

2l
. �A5�

Substituting Eqs. �A3� and �A4� into Eq. �A2�, the double-
counting term Edc is

Edc =
1

2 �
�mm�

��m,m��Vee�m,m�
n�

2l + 1

n−�

2l + 1

+ ��m,m��Vee�m,m� − �m,m��Vee�m�,m�

� �
mm�
n�

2l + 1
+ �1 − 
mm��

n�

2l + 1

n� − 1

2l
�� ,

�A6�

where the terms with 
mm� become zero by the minus sign of
the matrix elements in the second line. By Eq. �10� and the
definitions of U and J, we can further simplify Edc as

Edc =
1

2�
�
��2l + 1�2U

n�

2l + 1

n−�

2l + 1

+ ��2l + 1�2U − �2l + 1�U − 2l�2l + 1�J�
n�

2l + 1

n� − 1

2l
�

=
1

2�
�

�Un��n� + n−� − 1� − Jn��n� − 1��

=
U

2
n�n − 1� −

J

2�
�

n��n� − 1� , �A7�

which is the double-counting term used in Eq. �7�.

TABLE III. Calculated and experimental values for the zone-center TO phonon energies �in meV� for
MnO and NiO.

This work

LSDA+U aTO modes LSDA+U LSDA+U w/o FU LSDA Expt.b

NiO �111� 51.6 51.3 38.5 50.4 �50

In plane 53.4 53.1 46.2 52.2 �45

MnO �111� 37.9 37.5 33.7 37.3 36.4

In plane 35.3 34.7 12.6 33.5 33.3

aReference 28; Calculated by plane-wave method.
bReference 29.
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APPENDIX B: DISCUSSION ON THE EXACT DFT
AND THE SIZE OF FU

Suppose that the exact density-functional theory is avail-
able. Then we can write the total-energy functional as

Eexact�n� = EK�n� + EH�n� + Eext�n,���� + Exc�n� + Eii����� ,

�B1�

where EK is the kinetic energy, EH represents the Hartree
energy, Eext is the electron-ion interaction energy, Exc is the
exact exchange-correlation energy, and Eii represents the ion-
ion interaction energy. In the exact density-functional theory,
the exact Exc is a functional of the electron density only, and
it does not depend explicitly on positions of atoms.

In the density-functional theory, the force on an atom cor-
responds to the rate of the first-order change in the ground-
state energy when the atom is moved. Since the ground-state

energy is the value of the total-energy functional when it is
minimized with respect to all possible variations in the elec-
tron density, a change in the ground-state energy due to a
variation in the electron density caused by a change in
atomic positions is always of the second order, making no
contribution to the force.5,6,8 In the exact total-energy func-
tional, only Vext and Eii have explicit dependences on atomic
positions so that only these terms can contribute to the force.

If the EU term in the LSDA+U method, including the
double-counting term, could correct the LSDA exchange-
correlation energy Exc

LSDA in the sense that Exc
LSDA+EU be

equal to the exact Exc, the EU term would have no contribu-
tion to the atomic force because neither Exc

LSDA nor the exact
Exc contributes to the force. Thus our result that the calcu-
lated FU is relatively small in NiO and MnO may imply that
the EU term in the LSDA+U method is a good correction of
the exchange-correlation energy in NiO and MnO.
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